Random Graphs
 Exercise Sheet 4

Question 1. Let $p=\frac{c}{n}$ with $c>1$. Recall that with high probability there is a unique 'giant' component of $G_{n, p}$ of size $(1+o(1)) \beta_{c} n$ for some β_{c}. How many edges are in the giant component?
(It may be easier to consider the $G_{n, m}$ model)

Question 2. Let $\alpha, \delta>0$, let P be a path of length αn with $V(P) \subseteq[n]$ and let $p=\frac{\delta}{n}$. Suppose we split P into 5 paths $P_{1}, P_{2}, \ldots, P_{5}$ of equal length, show that whp $G(n, p)$ contains an edge between each pair of paths.

Deduce that if $p=\frac{c}{n}$ with $c>1$ then whp $G(n, p)$ is non-planar.

Question 3. The k-core of a graph G is the maximal induced subgraph of G with minimum degree at least k.

Show that if c is large enough then with high probability $G_{n, \frac{c}{n}}$ has a non-empty k-core. Show further that it is linear in size.

Question 4. Let $D(n, p)$ be a random digraph formed by taking, for each ordered pair $(x, y) \in[n]^{2}$ and edge from x to y independently with probability p.

Let $p=\frac{c}{n}$ with $c>1$. Show that whp $D(n, p)$ contains a directed cycle of length $\Theta(n)$.

Question 5. Show if every two disjoint vertex sets of size m contain an edge between them then G contains a path of length $n-2 m$.

Show that for every $\varepsilon>0$ there is a $c>0$ such that if $p=\frac{c}{n}$ then with high probability $G_{n, p}$ contains a path of length $(1-\varepsilon) n$.

Question 6. Using the previous question, show that for sufficiently large C and $p=\frac{C^{2}}{n}$ with high probability every 2-colouring of the edges of $G_{n, p}$ contains a monochromatic path of length at least $\frac{n}{C}$.

